
Playfair Cipher in Python
Aug 21, 2023 • 6 min read
Tags: Cryptography, Python

Playfair cipher is a type of polygraphic cipher that uses 55 grid of letters to encrypt
and decrypt messages. It was invented by Sir Charles Wheatstone but it is named after
Lord Playfair who promoted its use. The Playfair cipher was widely used in the WW1
and WW2 for military communication.

How the Playfair cipher works?
To encrypt and decrypt messages with Playfair cipher, you need the key which is a
55 grid of letters. Then you need to split the message into pairs of letters (digraphs)
and replace the characters based on some specific rules.

Key generation
Start with a keyword or phrase, for example: “SECRETKEY .ˮ Write the keyword from
the top left of the 55 grid, and fill the rest of the grid with the remaining letters of the
alphabet in order. The grid will look like below:

S E C R T

K Y A B D

F G H I L

M N O P Q

U V W X Z

In the Playfair cipher, ‘Iʼ and ‘Jʼ are usually treated as the same letter and occupy the
same cell in the Playfair square. When encrypting or decrypting, you can
interchangeably use ‘Iʼ and ‘Jʼ in your plaintext and ciphertext.

Encryption
To encrypt a message, split the message into pairs of letters (digraphs). If both letters
are the same or only one letter is left, then add “Xˮ after the first letter. For example,
lets encrypt the message “WELL DONE MY FRIENDS .ˮ We split them into: “WE LX LD
ON EM YF RI EN DS .ˮ

Stacked Up - Full Stack Web Development and AI - Python, Javascript, Rust. 1

https://www.nashruddinamin.com

Playfair Cipher in Python

For each pair of letters, perform the substitution using the following rules:

1. If the letters are in the same row, replace them with the letters to their right
(wrap around if necessary).

2. If the letters are in the same column, replace them with the letters below them
(wrap around if necessary).

3. If the letters are in different rows and columns, replace them with the letters at
the opposite corners of the rectangle formed by them.

We apply the rules above for our message with the 55 matrix:

1. WE forms a rectangle, replace it with VC.
2. LX forms a rectangle, replace it with IZ.
3. LD is in a column, replace it with QL.
4. ON is in a row, replace it with PO.
5. EM forms a rectangle, replace it with SN.
6. YF forms a rectangle, replace it with KG.
7. RI is in a column, replace it with BP.
8. EN is in a column, replace it with YV.
9. DS forms a rectangle, replace it with KT.

Our final encrypted message is “VCIZQLPOSNKGBPYVKT .ˮ

Decryption
To decrypt a message, you will need the same 55 grid of letters. For each digraph in
the ciphertext:

1. If the letters are in the same row, replace them with the letters to their right
(wrap around if necessary).

2. If the letters are in the same column, replace them with the letters above them
(wrap around if necessary).

3. If the letters are in different rows and columns, replace them with the letters at
the opposite corners of the rectangle formed by them.

Lets try to decrypt “VCIZQLPOSNKGBPYVKT .ˮ We split them into digraphs “VC IZ QL
PO SN KG BP YV KTˮ and use the previous 55 grid to perform the substitutions:

1. VC forms a rectangle, replace it with WE.
2. IZ forms a rectangle, replace it with LX.
3. QL is in a column, replace it with LD.
4. PO is in a row, replace it with ON.
5. SN forms a rectangle, replace it with EM.
6. KG forms a rectangle, replace it with YF.

Stacked Up - Full Stack Web Development and AI - Python, Javascript, Rust. 2

https://www.nashruddinamin.com/blog/playfair-cipher-in-python
https://www.nashruddinamin.com

Playfair Cipher in Python

7. BP is in a column, replace it with RI.
8. YV is in a column, replace it with EN.
9. KT forms a rectangle, replace it with DS.

Combining all of the decrypted digraphs resulting in “WELXLDONEMYFRIENDS .ˮ We
can remove the “Xˮ within the two Lʼs and we got our original message.

Implementing Playfair cipher in Python
Lets start with the function to generate the Playfair square for a given phrase:

def create_playfair_square(phrase):
key = key.replace('J', 'I').upper() + 'ABCDEFGHIKLMNOPQRSTUVWXYZ'
key = "".join(dict.fromkeys(key)) # Remove duplicate letters
grid = [[k for k in key[i:i+5]] for i in range(0, 25, 5)]
return grid

playfair_square = create_playfair_square('SECRETKEY')
Output:
[['S', 'E', 'C', 'R', 'T'],
['K', 'Y', 'A', 'B', 'D'],
['F', 'G', 'H', 'I', 'L'],
['M', 'N', 'O', 'P', 'Q'],
['U', 'V', 'W', 'X', 'Z']]

The create_playfair_square function accepts a single argument: phrase. This
phrase will be inserted into the 55 grid and the remaining cells will be inserted with
the rest of the alphabets.

We also define a helper function to get the coordinates of a character from this
Playfair square:

def find_location(grid, char):
"""Helper function to get the row and column of the given char"""
for i in range(0, 5):

for j in range(0, 5):
if grid[i][j] == char:

return i, j

Now that we already have the Playfair square and some helper function, we can write
the function to encrypt messages. Here is the function:

Stacked Up - Full Stack Web Development and AI - Python, Javascript, Rust. 3

https://www.nashruddinamin.com/blog/playfair-cipher-in-python
https://www.nashruddinamin.com

Playfair Cipher in Python

def playfair_encrypt(message: str, key: str) -> str:
playfair_square = create_playfair_square(key)
ciphertext = ''

Remove non-alphabetic characters
message = "".join(filter(str.isalpha, message))

Handle repeating letters by inserting 'X' between them
i = 0
while i < len(message) - 1:

if message[i] == message[i+1]:
message = message[:i+1] + 'X' + message[i+1:]

i += 1

Append 'X' if the last block only contain a single character
if len(message) % 2 == 1:

message += 'X'

For each digraphs, substitute the characters using the grid
for i in range(0, len(message), 2):

digraph = message[i:i+2]
row1, col1 = find_location(playfair_square, digraph[0])
row2, col2 = find_location(playfair_square, digraph[1])
if row1 == row2:

sub1 = playfair_square[row1][(col1 + 1) % 5]
sub2 = playfair_square[row2][(col2 + 1) % 5]

elif col1 == col2:
sub1 = playfair_square[(row1 + 1) % 5][col1]
sub2 = playfair_square[(row2 + 1) % 5][col2]

else:
sub1 = playfair_square[row1][col2]
sub2 = playfair_square[row2][col1]

ciphertext += sub1 + sub2

return ciphertext

The function playfair_encrypt takes two parameters: message and key, where
message is the plaintext to be encrypted and key is the phrase to generate the
Fairplay square.

First, the code will generate the Fairplay square using the provided key. After that, it
will pre-process the message to insert ‘Xʼ between repeating letters. It will also append
‘Xʼ at the end of the message if the last block only contain a single character.

Inside the loop, each digraph will be replaced with another digraph using the rules
explain in the previous section.

Stacked Up - Full Stack Web Development and AI - Python, Javascript, Rust. 4

https://www.nashruddinamin.com/blog/playfair-cipher-in-python
https://www.nashruddinamin.com

Playfair Cipher in Python

The decryption function is similar with the encryption above, we just donʼt need to
pre-process the input message. Instead, we remove the ‘Xʼ letters between two similar
letters and at the end of the message.

def playfair_decrypt(ciphertext: str, key: str) -> str:
playfair_square = create_playfair_square(key)
message = ''

For each digraphs, substitute the characters using the grid
for i in range(0, len(ciphertext), 2):

digraph = ciphertext[i:i+2]
row1, col1 = find_location(playfair_square, digraph[0])
row2, col2 = find_location(playfair_square, digraph[1])
if row1 == row2:

sub1 = playfair_square[row1][(col1 - 1) % 5]
sub2 = playfair_square[row2][(col2 - 1) % 5]

elif col1 == col2:
sub1 = playfair_square[(row1 - 1) % 5][col1]
sub2 = playfair_square[(row2 - 1) % 5][col2]

else:
sub1 = playfair_square[row1][col2]
sub2 = playfair_square[row2][col1]

message += sub1 + sub2

Remove the 'X' between two similar letters
i = 0
while i < len(message) - 2:

if message[i] == message[i+2] and message[i+1] == 'X':
message = message[:i+1] + message[i+2:]

i += 1

Remove the last 'X'
if message[-1] == 'X':

message = message[:-1]

return message

Putting it all together
Here is the complete code to encrypt/decrypt messages with the Playfair cipher:

def create_playfair_square(phrase):
"""
Generate the Playfair square for the given phrase.
"""
key = key.replace('J', 'I').upper() + 'ABCDEFGHIKLMNOPQRSTUVWXYZ'
key = "".join(dict.fromkeys(key)) # Remove duplicate letters

Stacked Up - Full Stack Web Development and AI - Python, Javascript, Rust. 5

https://www.nashruddinamin.com/blog/playfair-cipher-in-python
https://www.nashruddinamin.com

Playfair Cipher in Python

grid = [[k for k in key[i:i+5]] for i in range(0, 25, 5)]
return grid

def find_location(grid, char):
"""
Helper function to get the row and column of the given char.
"""
for i in range(0, 5):

for j in range(0, 5):
if grid[i][j] == char:

return i, j

def playfair_encrypt(message: str, key: str) -> str:
"""
Encrypt a message using the Playfair cipher.
"""
playfair_square = create_playfair_square(key)
ciphertext = ''

Remove non-alphabetic characters
message = "".join(filter(str.isalpha, message))

Handle repeating letters by inserting 'X' between them
i = 0
while i < len(message) - 1:

if message[i] == message[i+1]:
message = message[:i+1] + 'X' + message[i+1:]

i += 1

Append 'X' if the last block only contain a single character
if len(message) % 2 == 1:

message += 'X'

For each digraphs, substitute the characters using the grid
for i in range(0, len(message), 2):

digraph = message[i:i+2]
row1, col1 = find_location(playfair_square, digraph[0])
row2, col2 = find_location(playfair_square, digraph[1])
if row1 == row2:

sub1 = playfair_square[row1][(col1 + 1) % 5]
sub2 = playfair_square[row2][(col2 + 1) % 5]

elif col1 == col2:
sub1 = playfair_square[(row1 + 1) % 5][col1]
sub2 = playfair_square[(row2 + 1) % 5][col2]

else:
sub1 = playfair_square[row1][col2]
sub2 = playfair_square[row2][col1]

ciphertext += sub1 + sub2

return ciphertext

Stacked Up - Full Stack Web Development and AI - Python, Javascript, Rust. 6

https://www.nashruddinamin.com/blog/playfair-cipher-in-python
https://www.nashruddinamin.com

Playfair Cipher in Python

def playfair_decrypt(ciphertext: str, key: str) -> str:
"""
Decrypt a message using the Playfair cipher.
"""
playfair_square = create_playfair_square(key)
message = ''

For each digraphs, substitute the characters using the grid
for i in range(0, len(ciphertext), 2):

digraph = ciphertext[i:i+2]
row1, col1 = find_location(playfair_square, digraph[0])
row2, col2 = find_location(playfair_square, digraph[1])
if row1 == row2:

sub1 = playfair_square[row1][(col1 - 1) % 5]
sub2 = playfair_square[row2][(col2 - 1) % 5]

elif col1 == col2:
sub1 = playfair_square[(row1 - 1) % 5][col1]
sub2 = playfair_square[(row2 - 1) % 5][col2]

else:
sub1 = playfair_square[row1][col2]
sub2 = playfair_square[row2][col1]

message += sub1 + sub2

Remove the 'X' between two similar letters
i = 0
while i < len(message) - 2:

if message[i] == message[i+2] and message[i+1] == 'X':
message = message[:i+1] + message[i+2:]

i += 1

Remove the last 'X'
if message[-1] == 'X':

message = message[:-1]

return message

Usage example
keyword = 'SECRETKEY'
message = 'THE HACKING BLOG ROCKS'

encrypted = playfair_encrypt(message, keyword)
print(encrypted) # Will print: CLCGHABFVNDINHCPSARU

decrypted = playfair_decrypt(encrypted, keyword)
print(decrypted) # Will print: THEHACKINGBLOGROCKS

Stacked Up - Full Stack Web Development and AI - Python, Javascript, Rust. 7

https://www.nashruddinamin.com/blog/playfair-cipher-in-python
https://www.nashruddinamin.com

Playfair Cipher in Python

Key Takeaways
To conclude this blog post, letʼs review the main points we have covered:

1. Playfair cipher is a type of polygraphic encryption technique that uses a 55
grid of letters to encrypt and decrypt messages.

2. To generate the Playfair key, you need to choose a keyword or phrase that does
not contain any repeated letters, and fill the rest of the grid with the remaining
letters of the alphabet in order.

3. You need to split your message into pairs of letters (digraphs), and encrypt or
decrypt each pair according to the rules based on their position in the grid.

4. We have shown you how to write python code to encrypt and decrypt text with
Playfair cipher in python.

Stacked Up - Full Stack Web Development and AI - Python, Javascript, Rust. 8

https://www.nashruddinamin.com/blog/playfair-cipher-in-python
https://www.nashruddinamin.com

