
Dockerize Your FastAPI and Celery
Application
May 9, 2024 • 5 min read

Tags: FastAPI, Celery, Docker, Compose

A while ago I wrote a tutorial about how to use Celery with FastAPI to run
asynchronous tasks. In this post, I will explain how to dockerize the application and
simplify the deployment with Docker Compose.

Make sure you already have Docker installed on your system.

The source code to deploy
To recap, here is the source code from my previous FastAPI and Celery tutorial. We
have three files:

● requirements.txt - The file that specify the required dependencies.
● main.py - Contains the FastAPI application
● tasks.py - Contains the Celery tasks

The contents of requirements.txt:

fastapi==0.111.0
celery==5.4.0
redis==5.0.4

The contents of main.py:

main.py
from fastapi import FastAPI
from .tasks import celery, square_root

app = FastAPI()

@app.post('/square_root')
def process(num: float):
task = square_root.delay(num)
return {'taskId': task.id}

@app.get('/status/{task_id}')
def status(task_id: str):

task = celery.AsyncResult(task_id)
if task.ready():

nashruddinamin.com
Web Development and AI - Python, React, Rust. 1

https://www.nashruddinamin.com/blog/asynchronous-tasks-with-fastapi-and-celery
https://www.nashruddinamin.com

return {'status': 'DONE', 'result': task.get()}
else:

return {'status': 'IN_PROGRESS'}

The contents of tasks.py:

tasks.py
import math
import time
import os

from celery import Celery

REDIS_HOST = os.getenv('REDIS_HOST', 'localhost')
REDIS_PORT = os.getenv('REDIS_PORT', 6379)

celery = Celery(
'tasks',
broker=f'redis://{REDIS_HOST}:{REDIS_PORT}/0',
backend=f'redis://{REDIS_HOST}:{REDIS_PORT}/0'

)

@celery.task
def square_root(num: float):

time.sleep(10)
return math.sqrt(num)

In short, this simple application provides two endpoints:

● /square_root: start the task
● /status/<task_id>: check the status of the task.

When you make POST request to /square_root, it will return a task ID and run the
background task to do the calculation. The background task simply use delay to
simulate long-running code.

To check the status of the task, make a GET request to /status/<task_id>.

Writing the Dockerfile
In this scenario, we only need one Dockerfile for both the API and the worker code.
Create a new file named Dockerfile and put the following content:

FROM python:3.12-slim

WORKDIR /app

COPY . .

nashruddinamin.com
Web Development and AI - Python, React, Rust. 2

https://www.nashruddinamin.com

RUN pip install --no-cache-dir -r requirements.txt

Let’s break down the contents of the Dockerfile step by step:

● FROM python:3.12-slim
This line specifies the base image for the Docker image. In this case, it uses the
Python 3.12-slim image as the base, which is a lightweight version of Python.

● WORKDIR /app
This line sets the working directory inside the container to /app. It means that
all subsequent commands will be executed in this directory.

● COPY . .
This line copies the entire contents of the current directory (where the
Dockerfile resides) to the /app directory inside the container. It includes your
application code and any other necessary files.

● RUN pip install --no-cache-dir -r requirements.txt
This line installs the dependencies specified in the requirements.txt file.
The --no-cache-dir flag ensures that pip doesn’t cache the downloaded
packages, reducing the size of the final Docker image.

Writing the Docker Compose file
The Docker Compose file allows you to define and manage the services required for
your application in a single configuration file. By using Docker Compose commands,
you can easily build and run the entire application stack with just one command.

Create a new file named docker-compose.yml and put the following contents:

services:
api:
build:
context: .
dockerfile: Dockerfile

ports:
- 8000:8000

depends_on:
- worker

environment:
- REDIS_HOST=redis
- REDIS_PORT=6379

command: uvicorn main:app --host 0.0.0.0 --port 8000

worker:
build:

nashruddinamin.com
Web Development and AI - Python, React, Rust. 3

https://www.nashruddinamin.com

context: .
dockerfile: Dockerfile

depends_on:
- redis

environment:
- REDIS_HOST=redis
- REDIS_PORT=6379

command: celery -A tasks worker --loglevel=info

redis:
image: redis:latest

Let’s briefly summarize the file.

The api service is responsible for running the FastAPI application. It depends on the
worker service, which means it will only start after worker is running. The
environment variables REDIS_HOST and REDIS_PORT are set to connect to the Redis
service.

The worker service is responsible for running the Celery worker. It depends on the
redis service and sets the REDIS_HOST and REDIS_PORT environment variables to
connect to Redis.

The redis service uses the redis:latest image to run a Redis server. It provides
the message broker for the Celery worker and the API.

Run the application
Now that everything is in place, you can run the application by using this command:

docker compose up

nashruddinamin.com
Web Development and AI - Python, React, Rust. 4

https://www.nashruddinamin.com

