
Asynchronous Taskswith FastAPI
and Celery
Jan 28, 2024 • 5 min read

Tags: Python, FastAPI, Celery

Overview
When you have a long running Python function that you want to expose via an API
endpoint, you might want to run the function asynchronously to avoid timeouts.
Running a function asynchronously means it won’t block the rest of your code. Instead
of waiting the function to finish the task, your program can continue executing other
tasks, making it more responsive.

In this post, I will show you how to use Celery to execute tasks asynchronously in your
FastAPI application. We will use the function below to simulate long-running code:

import math
import time

def square_root(num: float):
time.sleep(10)
return math.sqrt(num)

In the real world applications, this might be sending emails to users, processing long
duration videos, or training ML models.

A quick intro to Celery
Celery is a task queuing in Python. You use Celery to manage and distribute tasks
across worker processes or machines. You define tasks in your Python code, and
Celery takes care of running them asynchronously. Its a perfect tool for handling
things such as time-consuming operations or external API calls.

Celery requires a message broker to transmit messages between the client (where
tasks are initiated) and the workers (where tasks are executed). There are many
options for messages brokers to be used with Celery. In this post, we will use Redis.

Write the API endpoints
We will use FastAPI to build the API endpoints. We will write two API endpoints:

nashruddinamin.com
Web Development and AI - Python, React, Rust. 1

https://docs.celeryq.dev/en/stable/
https://docs.celeryq.dev/en/stable/
https://redis.io/
https://www.nashruddinamin.com

● /square_root to initiate the execution of the function.
● /status/<task_id> to get the status of the task and retrieve the result.

Let’s get started. Install the required packages with pip:

pip install fastapi uvicorn celery redis

Create a new file named main.py and write dummy API endpoints with FastAPI�

main.py
from fastapi import FastAPI

app = FastAPI()

@app.post('/square_root')
def process(num: float):

return {'taskId': None}

@app.get(f'/status/{task_id}')
def status(task_id: str):

return {'status': 'IN_PROGRESS'}

Run the development server:

uvicorn main:app --reload

The server will run on localhost and listening on port 8000. You can test the two
endpoints we created earlier with Curl or HTTPie and see that the endpoints return
the dummy responses.

Write the Celery worker
We will wrap the long-running function in a Celery worker file. Create a new file named
tasks.py and modify the contents to the following:

tasks.py

import math
import time
import os
from celery import Celery

REDIS_HOST = os.getenv('REDIS_HOST', 'localhost')
REDIS_PORT = os.getenv('REDIS_PORT', 6379)

celery = Celery(
'tasks',

nashruddinamin.com
Web Development and AI - Python, React, Rust. 2

https://curl.se/
https://httpie.io/
https://www.nashruddinamin.com

broker=f'redis://{REDIS_HOST}:{REDIS_PORT}/0',
backend=f'redis://{REDIS_HOST}:{REDIS_PORT}/0'

)

@celery.task
def square_root(num: float):

time.sleep(10)
return math.sqrt(num)

In this file, we configure Celery with Redis as the message broker. The @celery.task
decorator transforms the square_root function into a Celery task, allowing it to be
scheduled and executed asynchronously.

Run the following command from another terminal:

celery -A tasks worker --loglevel=info

The command will start a Celery worker that will process tasks defined in the tasks
module. It also sets the logging level to “info” to provide more detailed information
about the tasks being processed.

Execute the Celery tasks from API endpoints
Now that we have basic API endpoints and the Celery task ready, we need to wire up
the two components. Open main.py and update its content:

main.py

...

from .tasks import celery, square_root

@app.post('/square_root')
def process(num: float):
task = square_root.delay(num)
return {'taskId': task.id}

@app.get(f'/status/{task_id}')
def status(task_id: str):

task = celery.AsyncResult(task_id)
if task.ready():

return {'status': 'DONE', 'result': task.get()}
else:

return {'status': 'IN_PROGRESS'}

nashruddinamin.com
Web Development and AI - Python, React, Rust. 3

https://www.nashruddinamin.com

In the /square_root endpoint, the code executes the square_root function
asynchronously and return the ID of the task. The client then need to check the status
of the task using that ID.

In the /status/<task_id> endpoint, the code accepts a task ID and returns its
status. If the task result is already available, the endpoint will also return it.

Next steps
After you build your FastAPI and Celery application, you might want to dockerize the
code and use Docker Compose to simplify the deployment.

nashruddinamin.com
Web Development and AI - Python, React, Rust. 4

https://www.nashruddinamin.com/blog/dockerize-your-fastapi-and-celery-application
https://www.nashruddinamin.com/blog/dockerize-your-fastapi-and-celery-application
https://www.nashruddinamin.com

